Part Number Hot Search : 
00HST C3195 PESD2CAN 120EI Z8400BK1 CTA17 STM8206 CAT24
Product Description
Full Text Search
 

To Download IRG4PH40UD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD- 91621B
IRG4PH40UD
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
Features
* UltraFast: Optimized for high operating frequencies up to 40 kHz in hard switching, >200 kHz in resonant mode * New IGBT design provides tighter parameter distribution and higher efficiency than previous generations * IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations * Industry standard TO-247AC package
C
UltraFast CoPack IGBT
VCES = 1200V
G E
VCE(on) typ. = 2.43V
@VGE = 15V, IC = 21A
n-ch an nel
Benefits
* Higher switching frequency capability than competitive IGBTs * Highest efficiency available * HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing
TO-247AC
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw.
Max.
1200 41 21 82 82 8.0 130 20 160 65 -55 to + 150 300 (0.063 in. (1.6mm) from case ) 10 lbf*in (1.1N*m)
Units
V
A
V W
C
Thermal Resistance
Parameter
RJC RJC RCS RJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
--- --- --- --- ---
Typ.
--- --- 0.24 --- 6 (0.21)
Max.
0.77 1.7 --- 40 ---
Units
C/W
g (oz)
www.irf.com
1
7/7/2000
IRG4PH40UD
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES
V(BR)CES/TJ
VCE(on)
VGE(th) VGE(th)/TJ gfe ICES VFM IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown VoltageS 1200 -- Temperature Coeff. of Breakdown Voltage -- 0.43 Collector-to-Emitter Saturation Voltage -- 2.43 -- 2.97 -- 2.47 Gate Threshold Voltage 3.0 -- Temperature Coeff. of Threshold Voltage -- -11 Forward Transconductance T 16 24 Zero Gate Voltage Collector Current -- -- -- -- Diode Forward Voltage Drop -- 2.6 -- 2.4 Gate-to-Emitter Leakage Current -- --
Max. Units Conditions -- V VGE = 0V, IC = 250A -- V/C VGE = 0V, IC = 1.0mA 3.1 IC = 21A VGE = 15V -- V IC = 41A See Fig. 2, 5 -- IC = 21A, TJ = 150C 6.0 VCE = VGE, IC = 250A -- mV/C VCE = VGE, IC = 250A -- S VCE = 100V, IC = 21A 250 A VGE = 0V, VCE = 600V 5000 VGE = 0V, VCE = 600V, TJ = 150C 3.3 V IC = 8.0A See Fig. 13 3.1 IC = 8.0A, TJ = 125C 100 nA VGE = 20V
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Qrr di (rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 86 13 29 46 35 97 240 1.80 1.93 3.73 42 32 240 510 7.04 13 1800 120 18 63 106 4.5 6.2 140 335 133 85 Max. Units Conditions 130 IC = 21A 20 nC VCC = 400V See Fig. 8 44 VGE = 15V -- TJ = 25C -- ns IC = 21A, VCC = 800V 150 VGE = 15V, R G = 10 360 Energy losses include "tail" and -- diode reverse recovery. -- mJ See Fig. 9, 10, 18 4.6 -- TJ = 150C, See Fig. 11, 18 -- ns IC = 21A, VCC = 800V -- VGE = 15V, R G = 10 -- Energy losses include "tail" and -- mJ diode reverse recovery. -- nH Measured 5mm from package -- VGE = 0V -- pF VCC = 30V See Fig. 7 -- = 1.0MHz 95 ns TJ = 25C See Fig. 160 TJ = 125C 14 IF = 8.0A 8.0 A TJ = 25C See Fig. 15 VR = 200V 11 TJ = 125C 380 nC TJ = 25C See Fig. 880 TJ = 125C 16 di/dt = 200A/s -- A/s TJ = 25C See Fig. -- TJ = 125C 17
2
www.irf.com
IRG4PH40UD
25
For both:
20
LOAD CURRENT (A)
D uty cy cle: 50% TJ = 125C T s ink = 90C G ate drive as specified P ow e r Dis sip ation = 35 W
S q u a re w a v e : 6 0% of rate d volta ge
15
10
I
5
Id e a l d io d e s
0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
10
TJ = 150 o C
TJ = 150 o C
10
TJ = 25 o C V = 15V 20s PULSE WIDTH
GE 1 10
TJ = 25 o C
1
1 5 6 7
V = 50V 5s PULSE WIDTH
CC 8 9 10
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4PH40UD
50 4.0
40
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
I C = 42 A
Maximum DC Collector Current(A)
3.0
30
I C = 21 A I C =10.5 A
2.0
20
10
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( C)
TJ , Junction Temperature ( C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
1
Thermal Response (Z thJC )
D = 0.50
0.20 0.1
0.10 0.05 0.02 0.01
SINGLE PULSE (THERMAL RESPONSE) 0.0001 0.001 0.01
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.1
P DM t1 t2 1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH40UD
4000
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
3000
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 21A
16
Cies
2000
12
8
1000
C oes C res
4
0 1 10 100
0 0 20 40 60 80 100
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
5.0
Total Switching Losses (mJ)
4.5
Total Switching Losses (mJ)
VCC = 800V VGE = 15V TJ = 25 C I C = 21A
100
RG = 10 Ohm VGE = 15V VCC = 800V
IC = 42 A
10
4.0
IC = 21 A IC = 10.5 A
3.5
3.0 0 10 20 30 40 50
1 -60 -40 -20
0
20
40
60
80 100 120 140 160
RGG,, Gate Resistance( (Ohm) R Gate Resistance )
TJ , Junction Temperature ( C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4PH40UD
16
12
8
I C , Collector-to-Emitter Current (A)
20 30 40 50
Total Switching Losses (mJ)
RG TJ VCC VGE
= 10 Ohm = 150 C = 800V = 15V
1000
VGE = 20V T J = 125 oC
100
10
4
0 0 10
SAFE OPERATING AREA
1 1 10 100 1000 10000
I C , Collector-to-emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Insta ntaneo us F orw ard Cu rrent - I F (A )
10
TJ = 15 0C TJ = 12 5C TJ = 2 5C
1 0 2 4 6 8 10
Fo rwa rd V oltage D rop - V F M (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH40UD
200 100
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
160
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
I F = 16A
t rr - (ns)
120
I F = 8 .0 A I F = 4 .0A
I IR R M - (A )
I F = 1 6A I F = 8.0A
10
80
I F = 4 .0 A
40
0 100
d i f /d t - (A / s)
1000
1 100
1000
di f /dt - (A /s)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
600
Fig. 15 - Typical Recovery Current vs. dif/dt
1000
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
500
I F = 4 .0A
400
d i(re c)M /d t - (A /s)
Q R R - (nC )
I F = 16 A
I F = 8.0 A
100
300
I F = 1 6A
I F = 8 .0A
200
I F = 4 .0A
100
VR = 2 0 0 V T J = 1 2 5 C T J = 2 5 C
10 100
0 100
d i f /d t - (A / s)
1000
1000
di f /dt - (A /s)
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4PH40UD
90% Vge Same ty pe device as D .U.T. +Vge
Vce
80% of Vce
430F D .U .T. Ic
10% Vce Ic
9 0 % Ic 5 % Ic
td (o ff)
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Vce Ic dt
t1 + 5 S V c e ic d t t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
Ic dt
V cc
trr id d t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
E re c =
t1
Vd Ic dt
t4 V d id d t t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
IRG4PH40UD
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000 F 100 V Vc*
D.U.T.
RL= 0 - 800V
800V 4 X IC @25C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
IRG4PH40UD
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10H, RG= 10 (figure 19) S Pulse width 80s; duty factor 0.1%. T Pulse width 5.0s, single shot.
Notes:
Case Outline TO-247AC
3 .6 5 (.1 4 3 ) 3 .5 5 (.1 4 0 ) 0 .2 5 ( .0 1 0 )
-A5 .5 0 (.2 17 )
-D-
1 5 .9 0 (.6 2 6 ) 1 5 .3 0 (.6 0 2 ) -B-
M
DBM
5 .3 0 (.2 0 9 ) 4 .7 0 (.1 8 5 ) 2.5 0 ( .0 8 9) 1.5 0 ( .0 5 9) 4
NOTE S: 1 D IM E N S IO N S & T O LE R A N C IN G P E R A N S I Y 14 .5M , 1 98 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M IL LIM E T E R S (IN C H E S ). 4 C O N F O R M S T O J E D E C O U T L IN E T O -2 4 7A C .
2 0 .3 0 (.8 0 0 ) 1 9 .7 0 (.7 7 5 ) 1 2 3
2X
5.5 0 (.2 1 7) 4.5 0 (.1 7 7)
-C-
LEAD 1234-
A S S IG N M E N T S GAT E COLLECTO R E M IT T E R COLLECTO R
*
1 4 .8 0 (.5 8 3 ) 1 4 .2 0 (.5 5 9 )
4 .3 0 (.1 7 0 ) 3 .7 0 (.1 4 5 ) 0 .8 0 (.0 3 1 ) 0 .4 0 (.0 1 6 ) 2 .6 0 ( .1 0 2 ) 2 .2 0 ( .0 8 7 )
*
3X C AS
2 .4 0 (.0 9 4 ) 2 .0 0 (.0 7 9 ) 2X 5 .4 5 (.2 1 5 ) 2X
LO N G E R LE A D E D (2 0m m ) V E R S IO N A V A IL A B L E (T O -2 47 A D ) T O O R D E R A D D "-E " S U F F IX TO PAR T NUM BER
3X
1 .4 0 ( .0 56 ) 1 .0 0 ( .0 39 ) 0.2 5 (.0 1 0 ) M
3 .4 0 (.1 3 3 ) 3 .0 0 (.1 1 8 )
CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P)
D im e n s io n s in M illim e te rs a n d (In c h e s )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 7/00
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRG4PH40UD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X